本节整理卷积方面基本概念
基本概念
- 卷积:卷积就是用一个可移动的窗口(卷积核),按一定步长,与图像对应元素进行点乘相加的操作。卷积本质上也是一种对数据维度的变换,提取图像的特征,相较于全连接层直接把图像展开成一个行向量,其能更好地捕获图像的空间特征,当然通过改变参数的形状,任何全连接层都能被转换为一个等价卷积层。
Convolution: Convolution is to use a movable window (convolution kernel) to perform a dot multiplication and addition operation with the corresponding elements of the image at a certain step size. Convolution is essentially a transformation of the data dimension to extract the features of the image. Compared with the fully connected layer that directly expands the image into a row vector, it can better capture the spatial features of the image. Of course, by changing the shape of the parameters, any fully connected layer can be converted into an equivalent convolution layer.